
22 Y. Wang et al.

F Additional Experiments

F.1 Naive Combination: DROID + ZoeDepth

Fig. 7: Camera trajectory. Top row: examples where the naive combination achieves
comparable results. Bottom row: naive combination leads to large error.

Our method TRAM derives camera motion scale from the background, by
using a robust optimization procedure to align SLAM depth with predicted
metric depth (Sec 3.3). As an alternative, we could give metric depth prediction
to SLAM along with the input images as pseudo RGB-D inputs. RGB-D SLAM
will then return trajectory in metric scale. As indicated in the main text, this
naive approach leads to an average ATE-S of 3.09m, while our method has an
average ATE-S of 0.66m. We visualize this difference in Figure 7. As shown,
DROID diverges in roughly half of the sequences due to noisy or spurious depth
predictions. Metric depth prediction cannot be treated as RGB-D inputs for a
SLAM system.



TRAM: Trajectory and Motion of 3D Humans 23

Fig. 8: Improving depth prediction. We render depth from SMPL reconstruction,
and use this depth map to correct any shift or scale biases in the metric depth pre-
diction. We scale and shift the depth prediction so that its human region would align
with the rendered SMPL depth.

EMDB 2 (ATE-S)

Scale Estimation using Short(5) Medium(10) Long(10) Average

ZoeDepth 0.48 0.62 0.78 0.66
ZoeDepth + shift correction 0.37 0.36 1.41 0.78
ZoeDepth + scale-shift correction 0.35 0.37 1.43 0.79

Table 6: Camera scale estimation. Using SMPL depth rendering to correct scale
and shift in depth prediction produces mixed results.

F.2 Using SMPL Depth to Improve ZoeDepth

We have shown that ZoeDepth prediction is not always accurate. Particularly,
there could be shift and scale biases. In such cases, the metric depth prediction
can be regarded as affine-invariant depth prediction. If there are objects of known
depth in the image, we can use them to correct the shift and scale. Can we use
human mesh reconstruction to help correct the biases? Specifically, could we
estimate shift and scale variables s and t to correct depth prediction D̂ = s⇤D+t?

Figure 8 illustrates this approach. We solve for the scale and shift correction
by aligning the human region in the depth prediction to the rendered depth
from SMPL reconstruction, through energy minimization similar to the robust
optimization in Sec 3.3 of the main text. We report the quantitative results in
Table 6. We observe mixed results: it improves scale estimation in some sequences
but decreases accuracy in others. Specifically, we observe that it decreases ATE-S
(better) by 20% in 10/25 sequences but increases ATE-S (worse) by 20% in 5/25
sequences. The average ATE-S is slightly worse, because worse cases happen to
be long sequences, so a small error in scale estimation could lead to a much
higher translation error.

The effectiveness of this approach is also influenced by the accuracy of the
mesh reconstruction. If the predicted human shape is more accurate, it will be
more effective. Inaccurate shape prediction (e.g., the predicted human being is
taller than the ground truth) will produce inaccurate depth rendering.



24 Y. Wang et al.

Fig. 9: Architecture of VIMO. Left: the detailed architecture of VIMO, with the
yellow blocks denoting the new temporal components. Right: the architecture of the
two temporal transformers.

G Implementation Details

G.1 Architecture

We show a more detailed view of the VIMO architecture in Figure 9. VIMO inter-
leaves spatial and temporal modules. Both temporal transformers have 6 layers
and 4 multi-head attention. The first temporal transformer (image domain) has
an embedding dimension of 512, while the second temporal transformer (motion
domain) has an embedding dimension of 384.

G.2 Datasets

We use 3DPW, Human3.6M, and BEDLAM to train our video transformer
VIMO. We evaluate on 3DPW and EMDB. 3DPW is an in-the-wild dataset
providing ground truth 3D pose annotations acquired with IMU and videos. 2D
and 3D joints are generated from the pose annotation. Human3.6M is an in-
door multi-view dataset with 2D and 3D joint annotation. Additionally, we use
SMPL recovered using MoSH for this dataset. BEDLAM is a large synthetic
dataset rendered with Unreal Engine 5 and SMPL. Therefore, it has the most
accurate SMPL pose and shape. EMDB is an in-the-wild dataset with accurate
SMPL and trajectory annotations recovered with electromagnetic sensors.

During training, we sample sequences of 16 frames from the three datasets.
There are about 1.3k sequences from 3DPW, 19k from Human3.6M, and 305k



TRAM: Trajectory and Motion of 3D Humans 25

from BEDLAM (30fps). So we sample sequences unequally from each dataset
to guarantee a good mix of real and synthetic data, with the following ratio:
[3DPW: 16.5%, Human3.6M: 16.5%, BEDLAM: 67%].

G.3 ORB-SLAM2

We use the open source ORB-SLAM2 implementation released by the authors in
https://github.com/raulmur/ORB_SLAM2. For the masked evaluation, we first
process the images in the dataset by setting all pixels within the human masks
to a value of 255. We run the entire ORB-SLAM2 pipeline including camera
tracking, point reconstruction, and loop closure. We specify our configuration
based on the default monocular SLAM parameters for the TUM RGB-D dataset
provided in the code and increase the number of features detected at each frame
to 4,000. Additionally, because the EMDB videos sometimes demonstrate low
contrast with a uniform background, we slightly lowered the minimum fast fea-
ture threshold per image patch (more details in the ORB-SLAM2 configuration
documentation). Despite these efforts, we still observed tracking failures due to
a fast-moving camera as well as textureless background regions. Compared to
ORB-SLAM2, DROID performed better in handling these areas because they do
not rely on distinctive sparse features; instead, DROID uses optical flow to guide
correspondence, which shares the benefits of low-texture texture handling with
direct SLAM methods. For loop closure, we use the bag-of-words vocabulary
provided in the official repository.

G.4 Training

Acceleration. The training of video models is costly. Because the backbone is
often frozen, previous methods pre-compute the features output by the backbone
and use them as input to finetune the upper layers (including new components).
While this approach reduces forward time, it is impossible to apply data aug-
mentation. To address this issue, we do not pre-compute features but use two
other methods: pre-cropping images and half-precision backbone inference. The
datasets provide high-resolution images which could take longer to load, crop,
and resize. Pre-cropping the images and saving them as crops reduces load-
ing time. Using crops has a different disadvantage: data augmentation such as
random rotation and scaling will produce black borders. While it could poten-
tially reduce the effectiveness (it’s not clear the extent), it is still better than no
augmentation. Secondly, we use half-precision inference for the backbone, which
reduces forward time. Since we do not finetune the backbone, using half-precision
will not affect the training.

Data Augmentation. We apply standard data augmentation including ro-
tation, scaling, horizontal flipping, color jittering, and occlusion. For video model
training, all augmentations except occlusion are applied consistently in the same
sequence. For example, the same degree of random rotation should be applied
for all 16 frames of a sequence. However, each frame has an independent and
equal chance of having occlusion augmentation.

https://github.com/raulmur/ORB_SLAM2

	TRAM: Global Trajectory and Motion of 3D Humans from in-the-wild Videos 

